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Abstract
The classic constant source problem for a half-space is generalized to include
the effect of refraction at the boundary by inclusion of the Fresnel boundary
conditions. The problem is solved using the Wiener–Hopf technique with both
specular and diffuse reflection. The non-singular Fredholm integral equations
that arise for the surface angular distribution are solved numerically and the
solutions are illustrated by a number of results in graphical and tabular forms.
The significant effect of refraction on the surface flux and current and the
associated angular distributions is highlighted.

PACS numbers: 28.20.Gd, 42.25.−p

1. Introduction

There are three classic half-space problems in particle transport theory, as described by the
Boltzmann equation: (a) the Milne problem, (b) the albedo problem and (c) the constant source
problem. The oldest of these problems, that due to Milne, was posed and approximately solved
by Milne in the 1920s in connection with the flow of energy inside stars. The albedo problem
also had extra-terrestrial origins in the need to calculate the reflection of sunlight from planets.
The third problem was introduced by nuclear reactor theorists although they also borrowed
the Milne and albedo problems. The major difficulty in obtaining analytical solutions to all
three problems arises from the boundary condition; namely a known incoming flux onto the
surface of the half-space but an unknown emergent flux of particles (neutrons or photons). This
leads to the associated mathematical problem being one involving mixed boundary conditions.
These problems have been solved using a variety of methods but the earliest was that of Wiener
and Hopf. A detailed examination of these problems can be found in Davison (1957) and
using a different approach in Case and Zweifel (1967).

In two recent papers (Williams 2005, 2006), we have examined the effect of Fresnel
boundary conditions on the behaviour of the radiation flux in the Milne problem and the

1 Address for correspondence: 2a Lytchgate Close, South Croydon, Surrey, CR2 0DX, UK.

1751-8113/07/071513+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1513

http://dx.doi.org/10.1088/1751-8113/40/7/006
mailto:mmrw@nuclear-energy.demon.co.uk
http://stacks.iop.org/JPhysA/40/1513


1514 M M R Williams

albedo problem. In the case of the Milne problem it is shown that the extrapolated endpoint,
the emergent angular flux and the spatial distribution were strongly dependent on the value of
the refractive index. Analogous conclusions were also found for the albedo problem. It was
also shown that the Wiener–Hopf method (Davison 1957, Williams 1971) provides a useful
technique for casting the problem into a mathematical form that is suitable for numerical
evaluation. We apply the same technique here to the classical constant source problem in
which a uniformly distributed source is present in the half-space. The internally reflected and
transmitted angular distributions are calculated, along with the surface flux and current for
specular and diffuse reflection at the boundary. In general, the work described here is relevant
to infra-red radiation and is a contribution to the understanding of the transmission of radiation
in the tissue of the neo-natal head. It also has applications in light transmission through an
interface between media with different refractive indices. The present work also completes the
solutions of these three classic problems in the optical region where refraction is important.

2. Definition of the problem

We assume one-speed transport theory throughout which is valid for radiation in the infra-red
region. Let φ(x, µ) be the radiative flux defined by the following transport equation (Davison
1957, Chandrasekhar 1960).

µ
∂φ(x, µ)

∂x
+ �φ(x,µ) = �s

2π

∫
dΩ′p(µ0)φ(x, µ′) +

Q0

2
. (1)

In equation (1), � = �s + �a , where �s is the macroscopic scattering cross section and �a

is the macroscopic absorption cross section. p(µ0) is the phase function which determines
the change in direction during a scattering event. µ0 = Ω ·Ω′, the cosine of the angle of
scattering. Q0 is the source strength.

In order to simplify our analysis, we assume that the phase function can be written as

p(µ0) = 1
2 (1 − µ̄0) + µ̄0δ(µ0 − 1), (2)

where µ̄0 is the mean cosine of scattering. Equation (2) is the so-called transport approximation
(Davison 1957). Inserting (2) into (1) and re-formulating, we find

µ
∂φ(x, µ)

∂x
+ φ(x, µ) = c

2

∫ 1

−1
dµ′φ(x, µ′) +

1

2
, (3)

where

c = �s(1 − µ̄0)

�s(1 − µ̄0) + �a

(4)

and x is scaled by the transport mean free path 1/�tr, where �tr = �s(1 − µ̄0) + �a . Also we
have used a unit source.

If we are to consider the problem with Fresnel boundary conditions (Born and Wolf 1999),
then we must write for µ > 0,

(a) specular reflection

φ(0, µ) = R(µ)φ(0,−µ) (5)

and
(b) diffuse reflection

φ(0, µ) = Rd(µ)J0, (6)
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where

J0 = 2
∫ 1

0
dµµφ(0,−µ). (7)

In equation (5), R(µ) is the Fresnel reflection coefficient arising from the internal reflection
of photons at the interface and given by Born and Wolf (1999) and Aronson (1995) as

R(µ) = 1

2

[(
µ − nµt

µ + nµt

)2

+

(
µt − nµ

µt + nµ

)2
]

µc � µ � 1

= 1 0 � µ � µc (8)

with µ2
t = 1 − n2 + n2µ2 (µ is the cosine of the angle of refraction). The critical angle for

internal reflection is given by

µc =
√

n2 − 1

n
(9)

or ϑc = sin−1(1/n), with n being the refractive index of the medium in x > 0. We note
from equation (8) that if n = 1, µc = 0 and R(µ) = 0, i.e. all photons are transmitted as in
the classical case. In the present case of a medium–vacuum interface and infra-red photons,
the boundary condition is far more complicated and consequently the problem becomes much
richer in content.

In the case of diffuse reflection, Rd(µ) will depend on the nature of the surface, but
simple roughness generally assumes the Lambert law in which Rd(µ) is independent of angle
(Modest 2003).

Equation (8) shows that total internal reflection occurs for photons in the range
0 � µ � µc. This is for photons in the medium. It is clear that photons on the vacuum
side of the interface are refracted as they pass through the interface. Because n > 1, the
refracted ray is bent towards the normal. Thus as the vacuum angle varies between 0 and π/2,
the direction of the refracted ray varies between 0 and ϑc. On the vacuum side, because the
photons are moving from a less dense to a denser medium, the reflection coefficient changes
in form (Sobolev 1963) and the transmission factor for emerging photons is 1 − R̃(µ), where

R̃(µ) = 1

2

[(
nµ − µ̃

nµ + µ̃

)2

+

(
µ − nµ̃

µ + nµ̃

)2
]

0 � µ � 1 (10)

and

µ̃ =
[

1 − 1 − µ2

n2

]1/2

. (11)

For the constant source problem equation (10) is not required, but we give it for completeness
and also because it is referred to in the appendix.

3. Solution of the constant source problem

We define the Laplace transform of the angular flux as

φ̄(s, µ) =
∫ ∞

0
dx e−sxφ(x, µ). (12)

Apply the transform to equation (3), divide by (1 + sµ) and integrate over µ(−1, 1) to get∫ 0

−1

dµµφ(0, µ)

1 + sµ
+

∫ 1

0

dµµφ(0, µ)

1 + sµ
= (1 − cK(s))φ̄0(s) − 1

s
K(s), (13)
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where

K(s) = 1

2s
log

(
1 + s

1 − s

)
(14)

and

φ̄0(s) =
∫ 1

−1
dµ φ̄(s, µ). (15)

We define

g−(s) =
∫ 0

−1

dµµφ(0, µ)

1 + sµ
(16)

g+(s) =
∫ 1

0

dµµφ(0, µ)

1 + sµ
(17)

whence (13) becomes

1 + csg−(s) + csg+(s) = (1 − cK(s))�̄(s), (18)

where �̄(s) = csφ̄0(s) + 1. Using (5) for specular reflection or (6) for diffuse reflection we
find

g+(s) =
∫ 1

0

dµµ�(µ)

1 + sµ
. (19)

For specular reflection

�(µ) = R(µ)φ(0,−µ) (20)

and for diffuse reflection

�(µ) = Rd(µ)J0. (21)

We now follow the well-established Wiener–Hopf procedure (Williams 1971) whereby we
define the function

τ(s) = (1 − cK(s))(s2 − 1)

s2 − ν2
= τ+(s)

τ−(s)
. (22)

The quantities ±ν are the roots of 1−cK(s) = 0. Thus τ(s) has no zeros in the range s(−1, 1)

and tends to unity as |s| → ∞. The functions τ±(s) are defined as

log τ±(s) = 1

2π i

∫ ±η+i∞

±η−i∞

log τ(u)

u − s
du (23)

τ+(s) is analytic for Re(s) < η and τ−(s) for Re(s) > −η where η < 1. We also note that
g−(s) is analytic for Re(s) < 1. φ̄0(s) is analytic for Re(s) > −ν. Inserting equation (22)
into equation (18) and rearranging terms leads to

(s − 1)

τ+(s)

{
1 + csg−(s) + cs

∫ 1

0

dµµ�(µ)

1 + sµ

}
= s2 − ν2

s + 1

1

τ−(s)
�̄(s). (24)

Here we see that the right-hand side is analytic in Re(s) > −ν. The first term in the curly
bracket on the left-hand side is analytic in Re(s) < η. Unfortunately, the second term is
analytic only in the strip −1 < Re(s) < η. Thus before we can use the Wiener–Hopf
factorization, it is necessary to decompose the second term as follows. Following Cauchy’s
principle, let us define

F(s) = 1

τ+(s)

∫ 1

0

dµµ�(µ)

1 + sµ
= F+(s) − F−(s), (25)
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where

F±(s) = 1

2π i

∫ ±η+i∞

±η−i∞

du

u − s

1

τ+(u)

∫ 1

0

dµµ�(µ)

1 + uµ
(26)

and F+ and F− have the same regions of analyticity as τ+ and τ−, respectively.
Equation (24) may now be written as

(s − 1)

τ+(s)
[csg−(s) + 1] + cs(s − 1)F+(s) = cs(s − 1)F−(s) +

s2 − ν2

s + 1

1

τ−(s)
�̄(s). (27)

Now the left-hand side of (27) is analytic in Re(s) < η and the right-hand side in Re(s) > −ν.
Hence we have a common strip of analyticity and the necessary Wiener–Hopf conditions are
satisfied. The limit of each side of equation (27) as |s| → ∞ goes linearly as s and so
according to the extended form of Liouville’s theorem (Titchmarsh 1937), we can write

cs(s − 1)F−(s) +
s2 − ν2

s + 1

1

τ−(s)
�̄(s) = C0 + C1s (28)

and
(s − 1)

τ+(s)
[csg−(s) + 1] + cs(s − 1)F+(s) = C0 + C1s, (29)

where C0 and C1 are constants to be determined.
To calculate F−(s), we refer the reader to Williams (1971) whence

F−(s) = −
∫ 1

0

dµµτ−(1/µ)

1 + sµ
�(µ). (30)

The Laplace transform of the scalar flux can be written from (28) as

�̄(s) = s + 1

s2 − ν2
τ−(s) [C0 + C1s − cs(s − 1)F−(s)] (31)

which means from the definition of �̄(s) that

φ̄0(s) = 1

cs

{
s + 1

s2 − ν2
τ−(s)[C0 + C1s − cs(s − 1)F−(s)] − 1

}
(32)

to get C0 we set s = 0 in equation (29), whence

C0 = −τ−(0) = − ν√
1 − c

. (33)

But we know physically that as x → ∞, φ0(x) ∼ constant + e−νx , thus we must choose C0

and C1 to remove the pole in (32) at s = ν. To do this we use (33) and

C1 = ν

(1 − c)τ−(0)
+ c(ν − 1)F−(ν) = 1√

1 − c
+ c(ν − 1)F−(ν) (34)

and we have used the relation τ−(−s) = 1/τ+(s) from the definitions in equation (23).
Inserting C0 and C1 into (32), we find

�̄(s) = (s + 1)

(s + ν)
τ−(s)

{
1√

1 − c
+ cs

∫ 1

0
dµ′ µ

′(1 + µ′)τ−(1/µ′)�(µ′)
(1 + νµ′)(1 + sµ′)

}
. (35)

To regain the flux itself we can return to the definition of �̄(s), but in order to calculate the
surface angular distribution we only need to integrate equation (3) to get

φ(0,−µ) = 1

2
�̄

(
1

µ

)
(36)
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whence from (35), setting s = 1/µ

φ(0,−µ) = 1

2
H(µ)

{
1√

1 − c
+ c

∫ 1

0

dµ′ µ′�(µ′)H(µ′)
µ + µ′

}
, (37)

where we have defined Chandrasekhar’s H function by

H(µ) = (1 + µ)τ−(1/µ)

1 + νµ
. (38)

There are two integral quantities of some interest, namely the surface scalar flux and the
current. The surface flux can be obtained readily from the Laplace transform by using the
relation

lim
s→∞ sφ̄0(s) = φ0(0) (39)

whence

φ0(0) = 1

c

[
1√

1 − c
− 1

]
+

∫ 1

0
dµH(µ)�(µ) (40)

and the current becomes

J (0) =
∫ 1

−1
dµµφ(0, µ) = − h1

2
√

1 − c
+

√
1 − c

∫ 1

0
dµµH(µ)�(µ), (41)

where h1 is the first moment of the H function (Chandrasekhar 1960). All of these results
depend on the form taken by �(µ) as defined by equations (20) and (21).

If the spatial variation of the scalar flux is required, then it is necessary to perform the
inverse Laplace transform of φ̄0(s). This is a tedious but straightforward procedure, details of
which may be found in Williams (1971). The result is of the form

φ0(x) = 1

1 − c
− (1 − ν2)

c(c + ν2 − 1)H(1/ν)

{
1√

1 − c
− cν

∫ 1

0
dµ

µH(µ)�(µ)

1 − νµ

}
e−νx

− 1

2

∫ 1

0
dω e−x/ω g(c, ω)

H(ω)

{
1√

1 − c
− cP .

∫ 1

0
dµ

µH(µ)�(µ)

ω − µ

}
, (40a)

where P. denotes principal value and

1

g(c, ω)
=

(
1 − cω

2
log

(
1 + ω

1 − ω

))2

+
(cπω

2

)2
.

Equation (40a) is physically interesting as it shows the structure of the solution. Namely, that
for very large distances from the surface the scalar flux goes over to the infinite medium value.
For distances a few mean free paths from the surface the integral transient term is negligible
and the solution has diffusion-like properties (see section 4). Near the surface, diffusion
theory fails and the complete solution is needed. For x = 0 we have the special case given by
equation (40). The value of φ(0,−m) is given by a solution of the integral equation (42) for
specular reflection or the expression (43) below for diffuse reflection. For diffuse reflection,
the result is explicit.

3.1. Specular reflection

In this case we use �(µ) = R(µ)φ(0,−µ) in equation (37) which then leads to a Fredholm
integral equation of the form

φ(0,−µ) = 1

2
H(µ)

{
1√

1 − c
+ c

∫ 1

0

dµ′ µ′R(µ′)φ(0,−µ′)H(µ′)
µ + µ′

}
. (42)
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This has to be solved numerically and the results inserted into (40) and (41). It is useful to
note, however, that if we set R(µ) = 1 in equation (42), i.e. perfect specular reflection, and
use the properties of the H-functions, we find that φ(0,−µ) = 1/2(1 − c). This is the infinite
medium solution as we expect.

3.2. Diffuse reflection

In the case of diffuse reflection, the integral equation becomes

φ(0,−µ) = 1

2
H(µ)

{
1√

1 − c
+ cJ0

∫ 1

0

dµ′ µ′Rd(µ
′)H(µ′)

µ + µ′

}
. (43)

To get J0 we multiply equation (43) by µ and integrate over µ(0, 1). Then using the properties
of then H functions (Chandrasekhar 1960), we get

1

J0
=

√
1 − c

h1

(
1 − 2

∫ 1

0
dµµRd(µ)[1 − √

1 − cH(µ)]

)
. (44)

Thus we find

φ0(0) = 1

c

[
1√

1 − c
− 1

]
+ J0

∫ 1

0
dµH(µ)Rd(µ) (45)

and

J (0) =
∫ 1

−1
dµµφ(0, µ) = − h1

2
√

1 − c
+

√
1 − cJ0

∫ 1

0
dµµH(µ)Rd(µ). (46)

If the diffuse reflection coefficient is independent of µ, as might be the case for a rough surface,
we find

φ0(0) = 1

c

[
1√

1 − c
− 1

] [
1 − Rd + 2Rdh1(1 +

√
1 − c)

1 − Rd + 2Rdh1
√

1 − c

]
(47)

and

J (0) = h1(1 − Rd)

2
√

1 − c(1 − Rd + 2Rdh1
√

1 − c)
. (48)

Note that when Rd = 1, J (0) = 0, because all particles are reflected and there is no leakage.
Also φ0(0) = 1/(1 − c) which is the infinite medium solution, as expected.

We note that the emergent angular distribution from the half space is

φout(µ) = 1

n2
(1 − R(µ))φ(0,−µ), (49)

where

µ =
√

1 − 1 − µ2
t

n2
0 < µt < 1

µt =
√

1 − n2(1 − µ2) µc < µ < 1.

(50)

4. Diffusion theory

A useful and effective alternative to transport theory can be the diffusion approximation. It is
reasonably accurate for small values of 1 − c and for positions a few mean free paths from
boundaries. In this section we show how a diffusion solution can be obtained.
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The diffusion equation for this problem can be written as (Davison 1957)

1

3

d2φ0(x)

dx2
− (1 − c)φ0(x) + 1 = 0. (51)

The associated boundary condition at a free surface with Fresnel reflection has been given in
Williams (2005) and takes the form

φ0(0) = λsφ
′
0(0), (52)

where for specular reflection

λs = 2

3

(
1 + 3R2

1 − 2R1

)
(53)

and

Rj =
∫ 1

0
dµµjR(µ). (54)

For diffuse reflection,

φ0(0) = λdφ
′
0(0), (55)

where

λd = 2

3

(
1 + 2R1

1 − 2R1

)
. (56)

Equations (53) and (56) show that the extrapolation distances for specular and diffuse reflection
are λs and λd , respectively and, moreover, that they are independent absorption, i.e. the value
of c.

Solving equation (51) subject to the boundary conditions we find

φ0(x) = 1

1 − c

[
1 − e−κx

1 + λκ

]
(57)

with κ2 = 3(1 − c). λ takes the appropriate value according to whether we have specular or
diffuse reflection. Thus we find

φ0(0) = λκ

(1 − c)(1 + λκ)
, J (0) = − κ

3(1 − c)(1 + λκ)
. (58)

5. Numerical results

In this section we will present some numerical results based upon the solution of the integral
equations for specular reflection only, i.e. equation (42). In table 1 we show the surface flux
and current for n = 4/3 and a range of c values. The results are for transport and diffusion
theories. It is clear that the surface currents are close, which means that diffusion theory is
remarkably accurate. This is probably because of conservation requirements. The accuracy
of diffusion theory is not nearly as good for the surface flux, the error in which varies from
24% at c = 0.1 to 11% at c = 0.99.

Tables 2 and 3 give results for the surface flux and current for c = 0.9 and c = 0.99,
respectively. Once again we find that the surface currents for transport and diffusion theories
are very close, to within 1.0% for the c = 0.9 and 0.99 cases. The diffusion surface flux is less
accurate but the error is less than 12%.

Finally, in order to illustrate how Fresnel reflection and Snell refraction affect the emergent
angular distribution from the surface of the half-space, we show figure 1. This gives the classic
result for no reflection, i.e. n = 1, as a comparison. The angle θ is the angle away from the
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Table 1. Surface flux and current for transport and diffusion theories, n = 4/3.

c φ0(0)T φ0(0)D −J (0)T −J (0)D

0.1 0.9263 0.6981 0.1446 0.1377
0.2 1.0278 0.7853 0.1611 0.1549
0.3 1.1554 0.8967 0.1818 0.1768
0.4 1.3206 1.0415 0.2088 0.2054
0.5 1.5437 1.2361 0.2455 0.2438
0.6 1.8633 1.5132 0.2985 0.2984
0.7 2.3628 1.9447 0.3821 0.3836
0.8 3.2693 2.7280 0.5356 0.5380
0.9 5.5408 4.7035 0.9270 0.9276
0.91 5.9852 5.0924 1.0044 1.0043
0.92 6.5183 5.5599 1.0974 1.0965
0.93 7.1719 6.1344 1.2119 1.2098
0.94 7.9962 6.8608 1.3566 1.3531
0.95 9.0755 7.8151 1.5469 1.5413
0.96 10.566 9.1375 1.8105 1.8021
0.97 12.795 11.125 2.2066 2.1941
0.98 16.621 14.556 2.8898 2.8708
0.99 25.493 22.575 4.4835 4.4522

Table 2. Surface flux and current for transport and diffusion theories, c = 0.9.

n φ0(0)T φ0(0)D −J (0)T −J (0)D

1.0 2.4025 2.5942 1.3049 1.2971
1.1 3.8179 3.2112 1.1956 1.1890
1.2 4.6613 3.8746 1.0754 1.0728
1.3 5.3415 4.5051 0.9623 0.9624
1.4 5.9077 5.0807 0.8601 0.8616
1.5 6.3877 5.5963 0.7690 0.7713
1.6 6.7969 6.0535 0.6886 0.6912
1.7 7.1473 6.4568 0.6180 0.6206
1.8 7.4481 6.8119 0.5561 0.5584
1.9 7.7097 7.1245 0.5016 0.5036
2.0 7.9384 7.3998 0.4535 0.4554

Table 3. Surface flux and current for transport and diffusion theories, c = 0.99.

n φ0(0)T φ0(0)D −J (0)T −J (0)D

1.0 9.0909 10.314 5.1359 5.1572
1.1 14.903 13.442 4.9882 4.9774
1.2 19.532 17.197 4.7857 4.7615
1.3 24.026 21.209 4.5608 4.5308
1.4 28.400 25.323 4.3265 4.2942
1.5 32.662 29.440 4.0892 4.0574
1.6 36.772 33.493 3.8543 3.8244
1.7 40.702 37.434 3.6257 3.5978
1.8 44.419 41.229 3.4063 3.3795
1.9 47.962 44.857 3.1955 3.1709
2.0 51.328 48.303 2.9940 2.9728
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Figure 1. Emergent and reflected angular distributions, c = 0.95.

normal to the surface so that θ = 0 is normal incidence and θ = 90 is grazing incidence. Also
in the figure is the emergent distribution for c = 0.95 and n = 4/3. This goes to zero at grazing
incidence in contrast to the n = 1 case. Additionally there is the internal incident distribution
before transmission through the Fresnel surface and the internally reflected distribution which
clearly shows the angular cut-off due to total internal reflection.

6. Conclusions and summary

This paper presents the solution of the third classic half-space problem with Fresnel internal
reflection; also it gives the case for diffuse reflection which is more appropriate for rough
surfaces. The solution follows the general principles laid down in our two previous works
(Williams 2005, 2006) in which the Wiener–Hopf method is employed. These seemingly
academic problems have more practical value than is often realized as they provide benchmarks
for more complex methods which deal with arbitrary geometries and also highlight the
important features of the solution. This can be seen in the spatial variation of the scalar
flux as given by equation (40a) and the emergent angular spectrum given by equations (42)
and (43). In the appendix, some additional results are given for the Milne and albedo problems
that were omitted from the earlier papers.

Appendix: additional results for the Milne and Albedo problems

In the two earlier publications (Williams 2005, 2006), for the Milne and albedo problems, we
did not give the surface flux and current. This is readily done by using equation (39) for the
results in those papers and by direct integration.

Albedo case—specular

φ0(0) = µ0

µ̄0
(1 − R̃(µ0))H(µ̄0) +

∫ 1

0
dµR(µ)H(µ)φ(0,−µ) (A.1)
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J (0) = √
1 − cµ0(1 − R̃(µ0))H(µ̄0) +

√
1 − c

∫ 1

0
dµµR(µ)H(µ)φ(0,−µ), (A.2)

where µ0 is the cosine of the incident direction of the particle and

µ̄0 =
√

1 − 1 − µ2
0

n2
. (A.3)

Milne case—specular

φ0(0) = A0 +
∫ 1

0
dµR(µ)φ(0,−µ)

(1 + νµ)H(µ)

1 + µ
(A.4)

J (0) = −A0

√
1 − c

ν
−

∫ 1

0
dµ

µR(µ)φ(0,−µ)

1 + µ

[
µ −

√
1 − c

ν
(1 + νµ)H(µ)

]
. (A.5)

A0 is an arbitrary constant fixed by the normalization at the surface. In fact the only meaningful
quantity for the Milne problem is J (0)/φ0(0) which is independent of A0.
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